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Abstract. Inspired by order-book models of financial fluctuations, we investigate the Interacting gaps
model, which is the schematic one-dimensional system mimicking the order-book dynamics. We find by
simulations the power-law tail in return distribution, power-law decay of volatility autocorrelation with
exponent 0.5 and Hurst exponent close to 1/2. Surprisingly, when we make a mean-field approximation,
i.e. replace the one-dimensional system by effectively infinite-dimensional one, we obtain analytically the
return exponent 5/2, in perfect accord with one-dimensional simulations.

PACS. 89.65.-s Social and economic systems – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

Despite much effort, understanding the fluctuations ob-
served in social phenomena, namely movements of prices
of various commodities, remains a challenging prob-
lem [1–4]. In short, the system is generically characterised
by a power-law tail in return distribution, with exponent
1 + α � 4, power-law autocorrelation of volatility, with
exponent ranging between 0.3 to 0.5, anomalous Hurst ex-
ponent H � 2/3, multifractality, and other, more subtle
features [5–13]. Econophysics is based on the belief that
physical models, methods and procedures may be appro-
priate to explain these stylised facts.

Among the numerous models of stock-market fluctu-
ations investigated by physicists in the last about ten
years [14–26], the order-book modelling [27–46] is par-
ticularly appealing, for at least two reasons. First, the
models of this kind typically use much less arbitrary and
ill-justified assumptions than other approaches. Second,
the similarity to widely-studied deposition and evapora-
tion models [47] promises to shed some light on genuinely
physical problems as well. Moreover, very detailed empiri-
cal studies are available, looking into the deep mechanisms
in work within the order book [40,42,48–57].

Perhaps the first important step in this direction was
marked by the model of Bak et al. (BPS) [29]. On a
line representing the price axis two kinds of particles are
placed. The first kind, denoted A (ask), corresponds to
the sell orders, while the second, B (bid), corresponds to
the buy orders. The position of the particle is the price at
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which the order is to be satisfied . A trade can occur only
when two particles of opposite type meet. If that happens,
the orders are satisfied and the particles are removed from
the system. This can be described as annihilation reaction
A+B → ∅. It is evident that all B particles must lie on the
left with respect to all A particles. The particles diffuse
freely and in order to keep their concentration constant
on average, new orders are inserted from the left (B type)
and from the right (A type). The whole picture of this
order-book model is therefore identical to the two-species
diffusion-annihilation process. The changes in the price
are mapped on the movement of the reaction front.

Many analytical results are known for this model. Most
importantly, the Hurst exponent can be calculated ex-
actly [30,31] and the result is H = 1/4. This value is well
below the empirically established value H � 2/3. To cure
this discrepancy, the pure diffusion-annihilation process
was modified so that the new orders are placed close to al-
ready existing ones, thus mimicking certain level of “copy-
ing” or “herding” mechanism, which is surely present in
the real-world price dynamics. The diffusion constant of
the orders can also be coupled to the past volatility, in-
troducing a positive feedback effect. This way the Hurst
exponent can be enhanced up to the level consistent with
the empirical value.

The diffusion of orders contradicts reality. Indeed, or-
ders can be placed into the order book, and later either
cancelled or satisfied, but change in price is very uncom-
mon. In the BPS model diffusion was a necessary ingredi-
ent to bring the orders together and let them annihilate.
Maslov [32] introduced a different model, equally simple
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but closer to actual functioning of the order book. Besides
the obvious classification of orders as A and B, they differ
in the timing of their satisfaction. Limit orders are placed
at certain price and their position is never changed, until
they are satisfied. The market orders do not specify any
price, but require to be executed immediately. Therefore,
the best limit order (i.e. highest B or lowest A) annihilates
with the currently introduced market order.

The Maslov model has several appealing features. Es-
pecially, the return distribution characterised by exponent
1+α � 3 seems to be close to the empirically found power
law. The scaling in return distribution is clearly seen as
well as the volatility clustering manifested by power-law
decay of the autocorrelation of absolute returns. However,
the Hurst exponent is 1/4 as in the BPS model, which is
bad news.

Sophisticated models with many ingredients mak-
ing them as realistic as possible were introduced subse-
quently [37–39]. The most important feature which was
absent in Maslov model is the cancellation (or evapora-
tion) of orders [42]. In fact, in a typical stock market, the
fraction of orders cancelled before execution is quite sub-
stantial. And it is the evaporation of orders that increases
the value of the Hurst exponent closer to the empirical
value, as demonstrated e.g. in [42]. Analytical results were
obtained for two types of “mean-field” approximation [37].
The exclusion principle, forbidding more than one order at
the same place, significantly facilitates the treatment. In
the first type of approximation, the average density of or-
ders was calculated using the master-equation approach.
In the second and complementary one, the quantity of
interest was the distribution of distances (gaps) between
adjacent orders. It is the latter approach that we took
inspiration from in this work.

Important progress was achieved in the articles [43,44]
using the assumption that the orders are “hard-core” par-
ticles. The exclusion principle follows and the authors were
able to exploit it to the maximum possible extent. By map-
ping the model on the well-studied asymmetric exclusion
process, it was possible to obtain the exact value of the
Hurst exponent H = 2/3. This is indeed very satisfactory
result, because the empirical value seems to lie very near.

Despite of the optimistic view presented in the preced-
ing paragraphs the true dynamics of the order book is far
from being fully understood. On one side, the trading in
the stock market is much more intricate than mere play
of limit and market orders. There are many more types
of them, sometimes rather complicated. Moreover, all the
above mentioned models are appropriate only to markets
without official market maker. In other markets the role
of the market maker, which can also follow certain non-
trivial rules of behaviour, cannot be passed over.

On the other side, the more realistic the model is, the
lower are the chances for analytic solution. Except for the
BPS model seen as diffusion-annihilation process and the
mapping on asymmetric exclusion process in [43], no ex-
act results are available. Maslov model was solved within a
sort of mean-field approximation [58], but the exponent of
the return distribution calculated this way was 1+α = 2,

in contradiction to the value 1 + α = 3 observed in sim-
ulations. Several approximative schemes were applied to
the models with evaporation [37] and the static properties,
namely the order density and the response function, were
successfully computed. The fluctuation properties, i.e. the
return distribution and the Hurst exponent, turn to be
harder problem. Therefore, it would be desirable to devise
a schematic model, which, while preserving general fea-
tures of the order-book dynamics, would promise deeper
analytic insight. In order to fill, at least partially, the gap
between more realistic and analytically solvable models,
we investigate here the Interacting Gaps model (IGM).

2 Order book as one-dimensional IGM

2.1 Motivation

It is well established empirically [56] that the distribution
of returns after one trade follows faithfully the distribu-
tion of the gap between lowest ask and highest bid (the
spread). The idea is therefore to calculate the probability
distribution of this gap, as it follows from the stochastic
process used to model the order-book dynamics.

Indeed, the state of the order book can be described
in terms of the positions of the orders ci. Equally well the
state is represented by the sequence of gaps, i.e. distances
between orders gi = |ci+1−ci|. Here and in all what follows
we suppose that all orders have the same unit volume. We
also simplify the situation assuming that the gaps can be
only positive integer numbers. This means that we allow
at most one order at each site and the same exclusion
principle as in previous works [37,43,44] is also effective
here.

When the orders are deposited, executed and evapo-
rated, the lengths of the gaps change, but such change
affects only at most two neighbouring gaps, as if the two
gaps in contact underwent a reaction producing one or
two new gaps at the place of the old ones. Indeed, if an or-
der is executed or evaporated, two adjacent gaps collapse
into one. When an order is placed, one gap is split into a
pair of adjacent gaps. To mimic such dynamics, Solomon
introduced the Interacting gaps model, which was first in-
vestigated in [59].

The idea of the model consists of three (admittedly
brute) simplifications. First, we do not make any distinc-
tion between the spread and any other gap. All gaps are
treated on equal basis. This also implies that there is no
intrinsic difference between asks and bids. All orders can
substitute both, depending on the context; more specif-
ically, on the current position of the price. As all gaps
are equivalent, the distribution of one-trade returns is as-
sumed equal to the distribution of lengths of all gaps.

This first simplification certainly deviates most from
the reality. Te spread, the second, the third etc. gaps are
not equivalent. On the other hand, the first gap interacts
strongly with the second one, so the distribution of the
former reflects to large extent the distribution of the lat-
ter. Hence the temptation to consider the distribution of
the first two gaps equal and by iteration we extend the
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hypothesis of equal distribution to each and every gap.
But then, it is also irrelevant where the reaction of the
limit and market orders takes place. We only need that
the place is not far from the reaction site in the previous
instant. It would be desirable to support the assumption
of equal distribution of at least two or three first gaps by
empirical data. Unfortunately, we are not aware of any
published results in this direction — which may be only
due to our ignorance, perhaps.

The second simplification consists in keeping the to-
tal number of orders constant. We also do not include the
evaporation explicitly. So, the deposition of an order is im-
mediately followed by execution of another order and vice
versa. Therefore, instead of keeping the average number
of orders constant, as in the models [32,37,42], we rather
impose strict conservation law for the number of orders,
like in [29]. Although the conservation or not may in prin-
ciple change the universality class of the model, we do not
believe it is the case here, because the numerical simula-
tion of e.g. the model of reference [37] shows rather mild
fluctuations of the number of orders around its average
value.

The third simplification concerns the position of the
price. A more realistic definition could be that the price
is the position of the last executed order. However, since
all our orders have unit volume and there may be at most
one order at the same place, the price would be situated at
an empty site. Such definition would bring an additional
complication in the relation between the distribution of
returns and distribution of gaps. Instead, we consider the
position of the existing order next to the last executed or-
der as the current price. We take the left and right neigh-
bour with equal probability 1/ 2. It can be understood
as identifying the price with either the highest bid or the
lowest ask. This way we make a systematic error in the ab-
solute price position. Typical size of the error is half of the
spread. However, we do not expect it to have significant
impact on the qualitative features of the return distribu-
tion, namely on the power-law tail, if present. Note also
that the commonly used definition of price as the exact
middle between lowest ask and highest bid is burdened by
the same type of systematic error, without considerable
consequences for the empirical return distribution.

Now, the question is how to implement the model with
such simplifications, while keeping as much fidelity to the
real dynamics as possible. Of course, many realistic fea-
tures will be irreparably lost, but still we believe that the
gap kinetics we apply says something on the true order
books. Thus, we introduce the following dynamical rules,
illustrated also in Figure 1.

One of the existing orders marks the current price.
Let us call it i. A new order is deposited next to it, at dis-
tance 1. Then, one order is executed immediately. We ad-
mit three possibilities. If the executed order is the newest
one, no apparent change in the order book results. Or, the
order i is executed. (E.g. if i is a bid, new order is an ask
and then a market order to sell arrives.) In this case the
sequence of deposition plus execution is equivalent to a
shift of the order i to the left or right by distance 1. In
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Fig. 1. Illustration of the Interacting Gaps model. From an
original configuration at step 1, two ways can lead to a final
configuration at step 2. In the intermediate step 1a a new order
(red in colour version) is deposited at the distance 1 from an
existing order (call it i for the moment). Then, at intermedi-
ate step 1b one of the previously existing orders is executed.
This way the total number of orders is kept unchanged. The
executed order is just the order i close to which the new order
was placed (this happens with probability 1 − p) or it is the
order j situated on the other side with respect to the new order
(with probability p).

other words, one of the reacting gaps is shortened by 1
and the other one gains 1 in its length. The third possibil-
ity is that the order j, next to the newest one, but on the
other side than the order i, is executed. (E.g. if both i and
the new orders are bids, j is an ask and a market order
to buy arrives.) This is equivalent to the collapse of two
adjacent gaps into two another gaps, one of them having
length 1 and the second gaining the rest of the sum of
lengths of the original gaps. We suppose that the collapse
occurs with probability p and the mere shift by 1 with
complementary probability 1 − p.

In the IGM there is no obvious constraint on the choice
of the pair of interacting gaps, besides the fact that they
must be adjacent. However, it is natural to assume that
the pair to interact now lies next to the pair which re-
sulted from the interaction in the last step. Were it gaps
gj and gj+1, we let interact either the pair gj−1 and gj or
gj+1 and gj+2, with equal probability. This way the index
j = k(t) determining the pair of gaps to interact at time t
performs a simple random walk. In reality, of course, the
process k(t) results from complicated dynamics of depo-
sition, execution, etc. of orders. Here we relax all bounds
k(t) must follow and keep only the elementary fact that in
absence of evaporation (which is what we assume) the sub-
sequent interaction sites must not lie far from each other.
The simplest way how to implement it is to require that
k(t)−k(t+1) = ±1 with equal probability for both signs.

We should also note that similar models have been
studied in physics since long ago, starting with the work
by Smoluchowski [60] on coalescence in colloidal suspen-
sions. Indeed, the gaps can be considered as sizes of parti-
cles, which may merge or split due to aggregation and dis-
sociation. Such processes were studied in open [61–63] as
well as closed [64,65] circumstances. Especially the model
with aggregation and chipping [66–70] seems to be close to
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Fig. 2. Example of the evolution of the order-book configuration. Horizontal lines represent the positions of the orders, the
rugged line describes the movement of the price. The parameters are N = 10, g = 5, p = 0.3.

our Interacting Gaps model. We shall spend a few words
of comparison in the conclusions.

2.2 Definition

Let us repeat the rules just explained in a more formal
way. We have N+1 orders of unit volume placed at integer
positions, ci ∈ Z, i = 0, 1, . . . , N . Alternatively, the state
is uniquely described by the position c1 and the widths
of the N gaps gi = ci − ci−1, i = 1, 2, . . . , N . The pair
of gaps to interact at time t is determined by the order
k(t) which lies at the border between the two gaps. Thus,
the interacting gaps are gj and gj+1, where j = k(t). Next
time the interaction takes place at the neighbouring order,
so k(t+1) = k(t)± 1 with equal probability, and with the
only (obvious) condition that 0 ≤ k(t) ≤ N for all times
t. We shall explain later what happens at the boundaries,
when k(t) = N or 0. Let us assume for a while that 0 <
k(t) < N .

After the interaction the two gaps affected change in
the following way. In all cases we first generate a random
number σ = ±1 (the direction along the price axis) where
both signs come with equal probability 1/2. Then, with
probability p a “collapse” occurs, and we perform the up-
date

(1, gj(t) + gj+1(t) − 1) for σ = +1
(gj , gj+1)(t + 1) =

{
(gj(t) + gj+1(t) − 1, 1) for σ = −1.

(1)

Conversely, with probability 1 − p a “shift” manifests
itself as

(gj , gj+1)(t + 1) = (gj(t) + σ, gj+1(t) − σ) (2)

on condition that both gj(t) + σ ≥ 1 and gj+1(t)− σ ≥ 1;
otherwise the gaps do not change.

For the orders at extremal positions, k(t) = N or 0,
the rules must be appropriately adapted, because there is
only one gap to change, instead of two. In principle, there
are several options how to define the dynamics. We found
the following modification reasonable. Again, the collapse
and shift occur with probabilities p and 1−p, respectively
and σ = ±1 is chosen with equal probabilities 1/2. Then,

the single affected gap is gj , where j = 1 if k(t) = 0 and
j = N if k(t) = N . The collapse implies that the gap
shrinks

gj(t + 1) = 1 (3)

but this happens only if σ = +1 and k(t) = N or σ =
−1 and k(t) = 0, i.e. the rightmost and leftmost gaps
can collapse only towards the bulk of the other orders.
Otherwise the gap does not change. On the other hand,
the shift will be free, i.e.

gj(t + 1) = gj(t) + σ (4)

if only gj(t) + σ ≥ 1.
The gap dynamics implies unambiguously the dynam-

ics of the positions of the orders. Interaction of gaps gj+1

and gj affects only the position of order j. Its old po-
sition cj(t) = cj−1(t) + gj(t) is changed to cj(t + 1) =
cj−1(t) + gj(t + 1). (To be precise, for j = 0 we must use
cj(t + 1) = cj+1(t)− gj+1(t + 1) instead.) All other orders
keep their positions, ci(t + 1) = ci(t) for all i �= j.

The remaining piece to be specified is the movement
of price. The most realistic prescription for the location of
the current price x(t) is the position of the order separat-
ing the two gaps after their interaction, i.e.

x(t + 1) = ck(t)(t + 1) (5)

therefore the return after one step of the dynamics is

r(t) ≡ x(t + 1) − x(t) = gk′(t + 1) (6)

where we denoted k′ = max(k(t), k(t − 1)). (The case
k′ = k(t) applies when the price went up, the other case
corresponds to a downward movement.) We can see that
the return equals one of the gaps exactly, which is just the
feature we built our model upon.

2.3 Simulation: dynamics

Let us see how the configuration of gaps evolves in com-
puter simulations. We found convenient to use rescaled
time, depending on the number of orders. So, in one up-
date the time is actually advanced by 1/N . The initial
condition will be always the uniform one, will all gaps
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Fig. 3. Evolution of the first two moments of the gap size
distribution and the largest gap. The parameters are N = 100;
g = 2 (�), 5 (�), 50 (◦), and 500 (�); p = 0.01.
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Fig. 4. Evolution of the first two moments of the gap size
distribution and the largest gap. The parameters are N = 10
(�), 100 (◦), and 1000 (�); g = 500; p = 0.1. The line in the
middle panel is the dependence ∝ t1/2.

equal, gi(0) = g. In Figure 2 we show a typical record of
the gap dynamics in relatively small order book of 10 or-
ders. We can clearly see the orders “waiting” unchanged
until the diffusing price hits them. The widths of the gaps
are far from uniform and quite large gaps occur regularly,
although most of the gaps are small.

Deeper insight into the dynamics of gaps distribution
can be gained through the evolution of the average and
the second moment of the gap distribution

〈gn〉 ≡ 1
N

N∑
i=1

gn
i (t) (7)

for n = 1, 2. An interesting quantity will be also the width
of the largest gap gmax. Obviously, the initial condition
implies 〈g〉(0) = gmax(0) = g and 〈g2〉(0) = g2.

We can see in Figures 3 and 4 how these three quanti-
ties evolve in the course of the simulation.

The average gap 〈g〉 keeps close to its initial value for
quite a long time and then quickly settles to a stationary
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Fig. 5. Cumulative distribution of gap sizes. The parameters
are N = 100, (�), 1000 (◦), and 10000 (�); g = 500; p = 0.1.
Line denotes the power law ∝g−1.5.

value. The latter is independent of the number of gaps N
and of the initial gap size g. However, it depends on the
probability of collapse p. For larger p the stationary 〈g〉 is
smaller, which can be easily understood intuitively, as col-
lapses produce short gaps (of size 1). The independence of
N is also to be expected, while convergence to a common
value irrespectively of g implies that after long enough
time the initial condition embodied in the starting place-
ment of orders is forgotten. In other words, the dynamics
is nicely ergodic, only the characteristic time to reach the
stationary state grows relatively fast (faster than linearly)
with the number of gaps N .

These conclusions are supported by the same qual-
itative behaviour of the second moment and the maxi-
mum gap. Interestingly, the second moment grows slowly,
〈g2〉 ∼ t1/2 in the transient regime, but then suddenly set-
tles at its stationary value. The behaviour of gmax is nearly
identical, suggesting that the transient values of 〈g2〉 are
dominated by the largest gap. The slight increase in the
stationary value of gmax with N is due to the fact that
the largest gap can be estimated as

∫ ∞
gmax

Pstat(g) � 1/N

where Pstat(g) is the N → ∞ limit of the stationary dis-
tribution of gap sizes.

To conclude, the study of the dynamics suggest that
there exists a well-defined stationary state, whose struc-
ture depends only on a single parameter p. The next para-
graph will be devoted to the investigation of its properties.

2.4 Simulation: stationary state

Let us look first at the distribution of gap sizes. It is shown
in Figure 5 and the data strongly suggest that for N → ∞
the tail if the distribution becomes a power law

P≥(g) ∼ g−3/2. (8)

The deviation from this dependence is due to finite num-
ber of gaps.

We should not forget that the motivation for the model
is mimicking the price fluctuations. So, let us see how the
one-step returns look like. The distribution of returns is
shown in Figure 6. Again, we can clearly see the power-law
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Fig. 6. Histogram of one-step returns. The parameters are
N = 100, (�), 1000 (◦), and 10000 (�); g = 500; p = 0.1.
Line denotes the power law ∝r−2.5.

behaviour in the tail

P (r) ∼ r−5/2 (9)

which is perfectly compatible with the gap-size distribu-
tion (8). The exponent observed in the simulations is very
well compatible with the value 1 + α = 5/2, which is
smaller than in the Maslov model, but it is still closer
to the reality than the mean-field calculation of refer-
ence [58].

We have not observed any dependence of the exponent
in the distributions on the parameter p. The only change
concerns the small values of g, while the tails remain un-
affected. Therefore the behaviour expressed by (8) and (9)
appears to be universal.

The volatility clustering is manifested in the autocor-
relation function of absolute returns 〈|r(t)r(t − ∆t)|〉c =
〈|r(t)r(t−∆t)|〉 − 〈|r(t)|〉〈|r(t −∆t)|〉. We show the simu-
lation result for this quantity in Figure 7. We can clearly
observe the slow power-law decay

〈|r(t)r(t − ∆t)|〉c ∼ (∆t)−η (10)

with exponent consistent with the value η � 0.5, which is
somewhat larger than in most empirical studies, but still
agrees with at least some of the real data [13]. Therefore,
the long-time correlations observed in the real time series
of returns are quite well reproduced within the Interacting
gaps model.

Finally, we looked at the Hurst plot, which is the de-
pendence of the typical extent of fluctuations during a
time interval ∆t on the length of this interval. The conve-
nient measure is provided by the quantity

R(∆t) =

〈
maxt′,t′′ |x(t′) − x(t′′)|√〈r2(t′)〉t′ − 〈r(t′)〉2t′

〉
t

(11)

where t′ and t′′ go from t to t + ∆t. The definition looks
awkward, but in the numerator there is just the extent of
the fluctuation from t to t+∆t and in the denominator we
have standard deviation of the fluctuations in this interval,
or square root of the volatility. Everything is then aver-
aged over the starting time t. The denominator becomes
substantial when the volatility has long-time correlations,
which is just the case here.

∆t

〈|r
(t

)r
(t
−

∆
t)
|〉 c
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Fig. 7. Autocorrelation of absolute returns. Parameters are
N = 1000, g = 50, p = 0.1. The line marks the dependence
∝ (∆t)−1/2.
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Fig. 8. Hurst plot for the systems of size N = 10 (�), N = 100
(�), N = 1000 (◦), and N = 10000 (�). Other parameters are
g = 500, p = 0.1. The straight lines are the powers ∝ (∆t)1/2.

If the dependence on the time span goes like R(∆t) ∼
(∆t)H , then H is the Hurst exponent. We can see from
the simulation results shown in Figure 8 that in IGM
the situation is not so straightforward. We observe three
regimes. For shorter times, the data indicate power-law
behaviour with Hurst exponent H � 0.5. Then, there is
a crossover regime for medium times, where R(∆t) is es-
sentially constant, and for the largest times there is again
power-law dependence with the same exponent H � 0.5.
All three regimes grow longer when the number of intervals
increases. The behaviour is at first sight similar to those of
reference [42], but the mechanism of the crossover to the
asymptotic value H = 1/2 is different. In [42] it is related
to the evaporation of orders, which is absent here.

It is not too difficult to interpret these results. We have
seen that in the stationary state the orders concentrate
into more or less coherent bunch. However, such bunch
is free to move along the price axis. The regime of short
times (which may last many decades, though, when N
is large enough) is dominated by the movements of the
price within the bunch. The rule determining which pair
of gaps will interact, imposes a true random walk in terms
of the indices of the gaps. Provided we can establish a typ-
ical gap size (and because the gap distribution has expo-
nent �5/2 > 2 we can, indeed), this implies that also the
price follows a process, which is essentially a random walk.
Hence the value 1/2 for the Hurst exponent, as long as
the movements are limited to the interior of the bunch of
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orders. The bunch as a whole also moves, but at much
larger timescale. In the intermediate times the price seems
to be trapped at a fixed position, just where the bunch
resides. This means that R(∆t) remains constant, propor-
tional to the size of the bunch. In this regime H = 0.
However, at still larger scales of time the movement of the
bunch determines also the movement of the price and be-
cause the bunch also moves like a random walk, the value
H = 1/2 is restored.

3 Mean-field approximation

In the one-dimensional version only adjacent intervals can
interact. Allowing interactions between any pair of inter-
vals we make a mean-field approximation, in the same
spirit as in reference [71] (and Refs. [66–68]).

The state is described by the set of gap lengths {gi},
i = 1, 2, . . . , N . The dynamics is the same as in the one-
dimensional IGM, with some simplifications. First, in each
step we choose randomly a pair of interacting gaps gj and
gl. As j and l are a priori equivalent indices (more pre-
cisely, the dynamics is invariant with respect to any per-
mutation of all indices, including the exchange j ↔ l as a
special case), the random choice of σ = ±1 is now super-
fluous. Second, there is no need for separate treatment of
the first and last gap, so that boundary conditions have
no effect. Thus, the collapse occurring with probability p
means

(gj , gl)(t + 1) = (1, gj(t) + gl(t) − 1). (12)

The shift with probability 1 − p amounts to the update

(gj , gl)(t + 1) = (gj(t) + 1, gl(t) − 1) (13)

if gl(t) > 1; otherwise there is no change.
We shall be interested in the probability distribution

on the space of all configurations, P ({gi}). However, the
restricted information contained in one-gap distribution
function Pj(g) =

∑
{gi} δ(gj−g)P ({gi}) will be enough for

our purposes. Occasionally, we shall employ the two-gap
distribution Pjk(g, g′) =

∑
{gi} δ(gj − g)δ(gk − g′)P ({gi}).

The permutation invariance guarantees that Pj(g) =
P1(g) and Pjk(g, g′) = P12(g, g′) for any indices j and
k (k �= j).

From the elementary moves (12) and (13) we derive the
following exact equation for the evolution of the one-gap
distribution

N
[
P1(g; t + 1) − P1(g; t)

]
= −2P1(g, t)

+ (1 − p)
[
δ(g − 1)P1(1; t)

+ P1(g + 1; t) + P1(g − 1; t)

+ P12(g, 1; t) − P12(g − 1, 1; t)
]

+ p
[
δ(g − 1) +

g∑
u=1

P12(u, g + 1 − u; t)
]
. (14)

For N → ∞ the two-gap distribution factorises, so that

P12(g, g′; t) = P1(g; t)P1(g′; t) (15)

and we obtain exact and closed equation for one-gap dis-
tribution function. However, when taking the thermody-
namic limit N → ∞ we miss certain essential features of
the distribution. We shall discuss later how to bring these
features back, for otherwise we fall into annoying incon-
sistencies.

In the stationary state the LHS of the master equa-
tion (14) vanishes. and applying the factorisation (15)
we get a closed equation for the stationary distribution
P1(g) = limt→∞ P1(g; t). The discrete Laplace transform
f̂(z) =

∑∞
g=1 zgf(g) converts it into a quadratic equation,

thus

−2P̂1(z)+p
[
z +

1
z

(
P̂1(z)

)2
]

+ (1 − p)
[(

z +
1
z

)
P̂1(z)

− (1 − z)
(
1 − P̂1(z)

)
P1(1)

]
= 0. (16)

Selecting the only physically admissible root we get the
solution

P̂1(z) =1 +
(
1 +

1 − p

2p
P1(1)

)
(z − 1)

− 1 − p

2p

(
1 − P1(1)

)
(z − 1)2

+
√{[

1 +
(
1 +

1 − p

2p
P1(1)

)
(z − 1)

− 1 − p

2p

(
1 − P1(1)

)
(z − 1)2

]2

−
[
1 +

(
2 +

1 − p

p
P1(1)

)
(z − 1)

+
(
1 +

1 − p

p
P1(1)

)
(z − 1)2

]}
. (17)

Now, the still unknown quantity P1(1), i.e. the probabil-
ity that a given gap has the minimum size 1, should be
established using the initial condition, where all gaps have
the same size g. Indeed, unlike the 1D dynamics, in the
mean-field version the updates (12) and (13) preserve the
average gap size. Therefore, 〈g〉 = limz→1− d

dz P1(z; t) = g
holds at all times, so it must be satisfied also in the sta-
tionary state, on condition that the latter exists. From
(17) we deduce that

〈g〉 = 1 +
1 − p

p
P1(1)

−
√[1 − p

p
P1(1)

]2

− 1 − p

p

(
1 − P1(1)

)
. (18)

As a function of P1(1) this expression attains maximum
at P1(1) = P c

1 (1) ≡ p
1−p

(
1/

√
p − 1

)
. The maximum value

of the average gap size is then

〈g〉max =
1√
p
. (19)
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We must distinguish three regimes. For g < p−1/2 the
one-gap distribution has exponential tail, because P̂1(z)
has all derivatives at z → 1−. For example, in the limit
p → 0 we can compute the distribution explicitly

P1(g) = (2 − g−1)
(
g−1 − 1

)g−1 (20)

for any value of g.
The second regime pertains to the critical value g =

p−1/2. If we insert the value P c
1 (1) into the solution (17),

we obtain

P̂ c
1 (z) = 1 − 1√

p
(1 − z) − (1 −√

p)2

2p
(1 − z)2

+
(1 −√

p)3

p9/4
|1 − z|3/2

√
1 +

(1 −√
p)2

4
√

p
(1 − z) . (21)

The (1 − z)3/2 singularity at z → 1 is the fingerprint of
the power-law tail in the distribution of gap sizes, with
exponent 5/2, so

P c
1 (g) ∼ g−5/2, for g → ∞. (22)

The third regime with g > p−1/2 is the most subtle one.
In infinite system, there is no stationary state. However,
it is easy to understand what type of non-stationarity we
face. As the time goes on, the gap distribution splits into
two substantially different contributions. First, there is a
portion proportional to the critical gap distribution P c

1 (g).
Second, there is a δ-function part which shifts to larger
and larger values but its weight shrinks. Schematically we
can write

P1(g; t) � (
1 − ε(t)

)
P c

1 (g) + ε(t)δ
(
g − gmax(t)

)
(23)

where gmax(t) should be interpreted as the size of the
largest gap at time t. The functions ε(t) and gmax(t) are
related by the requirement that the average gap size is
conserved, so ε(t) =

(
g − p−1/2

)
/
(
gmax(t) − p−1/2

)
.

In finite-size system the evolution does not proceed
indefinitely, because gmax(t) cannot exceed the total sum
of gaps Ng, as well as ε(t) cannot drop below the value
1/N . A stationary state is reached after all. For large but
still finite N we can easily deduce the stationary size of
the single largest gap

gmax =
(
g − p−1/2

)
N + p−1/2. (24)

Thus, the overall picture in the supercritical regime g >
p−1/2 is as follows. We have in mind the situation for large
but finite N . Most of the gaps are distributed according to
the critical distribution P c

1 (g) characterised by the power-
law tail ∼ g−5/2. This part of the distribution does not
depend neither on the probability p nor on the number of
the gaps N and this is the relevant part to be taken into
account when we ask about the distribution of one-step
returns. So, we conclude that the return distribution has
a power-law tail

P (r) ∼ r−5/2, for r → ∞, (25)

for any value p ≥ 1/g2. In this range, the return exponent
α + 1 = 5/2 is universal.

The remaining part of the gap distribution corresponds
to the condensation of the excess total length of the gaps
into the single largest gap. For finite system, its stationary
length scales linearly with N , while in the infinite system
it keeps growing forever. For the distribution of returns
this is irrelevant, though. Indeed, the largest gap is to be
interpreted as if the price axis was compactified by peri-
odic boundary conditions, joining the highest price with
the lowest one. The orders are then placed on a ring in-
stead of a line or a segment. The largest gap is then the
distance from the highest to the lowest order measured
around the whole ring. Its size depends largely on the
measure of the ring, i.e. on the way the boundary condi-
tions were introduced, and does not bear any physically
relevant information. To sum up, it is an artifact of the
mean-field approximation.

So, for small p the distribution is exponential, while for
large enough p it is power-law. One may ask a seemingly
academic question, what happens if p = 1 strictly. Then,
the stationary state is trivial, all gaps having size 1 except
a single gap collecting all the remaining length. However,
the transient state is of interest. We can easily find that at
each time the distribution of gap lengths is exponential,
P1(g) ∝ a−g, but a depends on time. Interestingly, the
result coincides exactly with Smoluchowski’s solution of
the coagulation kinetics [60].

4 Conclusions

We investigated a schematic model of stock market dy-
namics, based on placing and executing orders in the or-
der book. We reduced the distinction between buy and sell
orders to a minimum, which leads to formulation of one-
dimensional model of pairwise interacting intervals. The
only relevant parameter is the probability p that the two
gaps collapse.

The simulations show that for any initial conditions,
the dynamics settles down in a stationary state, charac-
terised by the power-law distribution of interval sizes, with
exponent �5/2. The same exponent 1 + α � 5/2 is found
in the tail of the distribution of returns. An important fact
is that the exponent does nor depend on the parameter p
and therefore it seems to be universal. On the other hand,
the empirical value is larger, about α � 3 and also in the
“classical” order book model by Maslov the value α = 2
exceeds our result. This means that the Interacting Gaps
model exaggerates large price changes. This may be due
to the fact that by definition it does not take fully into
account that the new orders are placed close to the cur-
rent price. Therefore, in reality the price is trapped and
squeezed in an area of high density of orders, bids on one
side and asks on the other. This effect is suppressed in the
IGM.

It seems rather evident that our model belongs to the
same universality class as the aggregation-chipping mod-
els [67,68], which have the same critical exponent 5/2 in
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mean-field. However, the choice of interacting pairs is dif-
ferent. Ours is much more correlated and our model should
differ significantly, when fluctuations play a role. We ex-
pect much higher level of spatial correlations in IGM than
in aggregation-chipping models. Why these correlations
are not reflected in the super-universal value 5/2 of the
exponent is not clear to us; we shall return to this point
several paragraphs below.

We also observed volatility clustering. We measured
the autocorrelation function of absolute returns, which
decays as a power law with exponent η � 0.5, agreeing
qualitatively with empirical data. Unfortunately, we were
not able to analytical results in this direction. The tempo-
ral correlations of volatility reflect the spatial correlations
of the gap lengths. Within the mean-field approximation
the correlation of lengths of neighbouring gaps is absent
and therefore also the temporal correlations in volatility
disappear. We consider likely that such temporal correla-
tions are absent also in one-dimensional aggregation mod-
els [67,68], but we have not checked it.

The measurement of the Hurst exponent shows certain
ambiguity. As a short statement we can conclude that we
found that H � 1/2. This is exactly the random-walk
value, lower than the empirical one. On the other hand
we are much closer to reality than the results of e.g. the
Maslov model and not farther than the improved models,
which take into account evaporation of orders. Generically,
we observe that in all “zero-intelligence” models, includ-
ing IGM, the Hurst exponent is 1/2 at most. This also
suggests that the over-diffusive empirical value H � 2/3
might be due to some, maybe utterly simple, strategic
behaviour. Speculations about various “zero-plus-epsilon-
intelligence” models are open.

The striking result appears when we compare the simu-
lations with analytically solvable mean-field version of the
model. Despite of the fact that we have one-dimensional
system on one side and infinite-dimensional variant on
the other, the exactly found mean-field return exponent
1 + α = 5/2 is the same as the value obtained numeri-
cally in one dimension. In fact, in the aggregation-chipping
model, which apparently belongs to the same universality
class, it was proved [70] that the phase diagram does not
depend on spatial dimension, so the mean-filed and one-
dimensional results coincide. The same work also presents
a strong argument in favour of super-universality of the
exponent 5/2. We believe the same argument holds also in
our model. Analogous behaviour was also observed in one
dimensional rice-pile model [72], but general explanation
of the effect eludes us.

Finally, let us mention the possible modification in-
cluding a “zero-intelligence” market maker. In the order-
book models mentioned so far the update was sequential,
as the orders were executed one by one. The role of the
market maker can be mimicked by partially parallel up-
date of the order book. The orders are processed in chunks,
containing larger or smaller number of individual orders.
This way we can incorporate here some of the features
of the Minority Game [19], one of the prominent abstract

models of a stock market. The possible fruits of such fusion
are subject of our further study.
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